# Dispersion measures for ungrouped (raw) univariate data

#### BEA140 Quantitative Methods - Module 2



### Dispersion

In these slides we will look at a number of dispersion measures for ungrouped (raw) univariate data.

In statistics **dispersion measures** attempt to give us an idea of how *stretched* or *squeezed* data points are.

#### **Dispersion** - Range

The **range** of a data set is the difference between the maximum value and the minimum value.

I.e. range = 
$$X_{max} - X_{min}$$

**Example:** Going back to our ungrouped (raw) travel time data:

range = 
$$X_{max} - X_{min} = 42 - 8 = 34$$
.

The range can be obtained in Excel using the MAX function minus the MIN function.

# **Dispersion** - Variance (Definition)

The **variance** of a data set is 'the mean/average of the values obtained from squaring the difference between each data point and the mean'.

I.e. 
$$\sigma^2 = \frac{\Sigma (X_i - \mu_X)^2}{N}$$
 (population)

$$s^2 = rac{\Sigma(X_i - \overline{X})^2}{n-1}$$
 (sample)

**Note:** More mathematically inclined students may wish to note that the reason the sample variance formula uses n - 1 in the denominator (instead of n) is to correct a mathematically inherent bias as an estimation of the population variance.

# Dispersion - Variance (Computation)

Although we won't, it is possible to show that the population and sample variance can be calculated using the following computationally friendly formulas:

$$\sigma^{2} = \frac{\sum X_{i}^{2} - \frac{(\sum X_{i})^{2}}{N}}{N} \quad \text{(population)}$$

$$s^2 = rac{\Sigma X_i^2 - rac{(\Sigma X_i)^2}{n}}{n-1}$$
 (sample)

The population and sample variance can be obtained in Excel using the VAR.P and VAR.S functions respectively.

**Note:** When calculating variance (or standard deviation - see the next slide), it is more efficient and less error prone to use a table.

#### Dispersion - Variance Example

Going back to our ungrouped (raw) travel time data:

| Xi      | 15  | 29  | 8  | 42   | 35   | 21  | 18  | 42   | 26  |
|---------|-----|-----|----|------|------|-----|-----|------|-----|
| $X_i^2$ | 225 | 841 | 64 | 1764 | 1225 | 441 | 324 | 1764 | 676 |

$$\Sigma X_i = 15 + \ldots + 26 = 236$$

$$\Sigma X_i^2 = 225 + \ldots + 676 = 7324$$

$$s^{2} = rac{\Sigma X_{i}^{2} - rac{(\Sigma X_{i})^{2}}{n}}{n-1} = rac{7324 - rac{(236)^{2}}{9}}{8} = 141.94 ext{ (to 2 dp)}.$$

(population) 
$$\sigma = \sqrt{\sigma^2}$$
 (sample)  $s = \sqrt{s^2}$ 

The population and sample standard deviation can be obtained in Excel using the STDEV.P and STDEV.S functions respectively.

**Note:** The standard deviation is by far the most commonly used measure of variation/dispersion.

**Sanity Check:** A "*rule of thumb*" is that the range is usually somewhere between 3 and 8 times the standard deviation.

I.e. for a population we usually have:

 $3\sigma \leq \text{range} \leq 8\sigma$ .

### **Dispersion - Standard Deviation Example**

For our ungrouped (raw) travel time data, we obtained the variance  $s^2 = 141.94$ .

Hence the standard deviation is  $s = \sqrt{141.94} = 11.91$  (to 2 dp).

**Sanity Check:** the range is  $\frac{34}{11.91} \approx 2.85$  times the standard deviation, and hence outside the 3-8 band for our sanity check with this data!

Interpreting the standard deviation is aided by what is famously referred to as *the empirical rule*, which states:

"For data sets that are normally distributed (normal distribution is introduced later) and as a 'rule of thumb' for any data set:

- *(i)* around 68% of the data will fall within one standard deviation of the mean;
- *(ii) around* 95% *of the data will fall within two standard deviations of the mean; and*
- (iii) around 99% of the data will fall within three standard deviations of the mean."

## **Dispersion - Empirical Rule Example**

With our ungrouped (raw) travel time data:

- (i) the mean is  $\overline{X} = 26.22$  (to 2 dp); and
- (ii) the standard deviation is s = 11.91 (to 2 dp).

Hence the emperical rule suggests that (as a rule of thumb):

- (i) 68% of the data will fall between 14.31 minutes and 38.13 minutes; and
- (ii) 95% of the data will fall between 2.4 minutes and 50.04 minutes.

#### Dispersion - Standard score

The **standard score** (z) of a single observation from a data set is the number of standard deviations that it is away from the mean.

I.e. 
$$z = rac{X_i - \mu}{\sigma}$$
 (population) and  $z = rac{X_i - \overline{X}}{s}$  (sample).

With our ungrouped (raw) travel time data:

(i) for the mean we have  $\overline{X} = 26.22$  (to 2 dp); and (ii) for the standard deviation we have s = 11.91 (to 2 dp). Hence the standard score of the observation 8 is:

$$z = \frac{8 - 26.22}{11.91} = -1.53$$
 (to 2 dp).

I.e. The observation 8 is -1.53 standard deviations below the mean.

# ... that's it for now, thanks for watching!

Don't forget that you can ask questions via:

- (i) face-to-face lectures;
- (ii) workshops or tutorials;
- (iii) consultation hours; or
- (iv) email.